US009053134B2

a2z United States Patent 10y Patent No.: US 9,053,134 B2
Kemmler et al. 45) Date of Patent: *Jun. 9, 2015
(54) VIEW VARIANTS IN DATABASE SCHEMA (56) References Cited
MAPPING
U.S. PATENT DOCUMENTS

(71) ApplicantS:Andreas Kemmler, Boenmghelm (DE), 5,737,591 A * 4/1998 Kaplan etal, oo 1/1
Torsten Kamenz, Wiesloch (DE) 8,190,646 B2* 5/2012 Laxminarayanan 707/792

8,694,559 B2 4/2014 Kemmler et al.
(72) Inventors: Andreas Kemmler, Boennigheim (DE); 388451;8(1)2(1)233 2}: ggggg \S/u et al.al Z?zg(ﬁ

. oan et al.

Torsten Kamenz, Wiesloch (DE) 2006/0074953 A1* 4/2006 Dettinger et al. 707/101
) 2008/0319968 Al* 12/2008 Dettinger etal. 707/4

(73) Assignee: SAP SE, Walldorf (DE) 2014/0019410 Al 1/2014 Kemmler et al.
2014/0181154 Al* 62014 Amuluetal. ... 707/303
(*) Notice: Subject to any disclaimer, the term of this 2014/0258217 Al1* 9/2014 Kemmler 707/609

patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 222 days.
Primary Examiner — Binh V Ho

This patent is subject to a terminal dis-)
(74) Attorney, Agent, or Firm — Brake Hughes Bellermann

claimer.
LLP
(21) Appl. No.: 13/828,027 57) ABSTRACT
(22) Filed: Mar. 14,2013 This disclosure includes a method, a system and a computer
readable medium. The method includes receiving a data
(65) Prior Publication Data model configured to model data in a first database schema in

a database system, using the received data model to generate
a first data view of a first instance of the first database schema
in the database system, including referencing, using a first
(51) Imt.ClL
view variant, one or more data tables including the first

US 2014/0280368 Al Sep. 18, 2014

GOGF 7/00 (2006.01) instance of the first database schema to generate the first data
GO6F 17/30 (2006.01) . . .
view, and using the received data model to generate a second
(52) US.ClL data view of a second instance of the first database schema in
CPC ... GO6F 17/30294 (2013.01); GOGF 17/30 the database system, including referencing, using a second
(2013.01) view variant, one or more data tables including the second
(58) Field of Classification Search instance of the first database schema to generate the second
... GO6F 17/30392; GOG6F 17/30292 data view.
.. 707/803
See application file for complete search history. 20 Claims, 6 Drawing Sheets

2
Addonview [°°

106
(~\
2 Schema mapping |—402 A 206
i
modu|:p 8 »| Data view generator /
N T~
~ -
~ T -
~ —_—
~
~
~, 506 S TUNTm=—o_ 510
Data View 1 Data View 2
508 |
Schema 1 Schema 2

US 9,053,134 B2

Sheet 1 of 6

Jun. 9, 2015

U.S. Patent

T 'Sl

uonesdiy
T T ¢sda
_ cl
| I
e m)
00T |
|
nt |
[]
90T . 20T \;SW!;J
JaSeue o ™
q W — 3 suonesado
N0 ¢ N ¢ PN asudaaug N
g |apo eleq — \\;; i v
[A\ y ey N R < A
e |
- |
|
_ I J
Josn |
™ mmmmm———— TSd
ot § ® o
essIN >

U.S. Patent Jun. 9, 2015 Sheet 2 of 6 US 9,053,134 B2
205
210 215 220 225
ya L £ 4
Content Package View Variant | Authoring Schema Physical Schema
Ven1.Pkgl.Compl ERP_1 V1 Schi ERP1
Ven1.Pkgl.Compl ERP_2 V1_Schi ERP2
Ven1.Pkgl.Comp2 HCM_1 V1_Schi ERP1
Ven2.Pkgl.Compl ERP_3 V2_Schi ERP3
Ven2.Pkgl.Compl ERP_4 V2_Schl ERP4
n-1 n-1 n-1 n-1
n n n n
FIG. 2A
250
255 260 265 270
/ y - 4
. Calling Package Called Package View
Calling Package View Varient Called Package Varient
Venl.Pkgl.Comp?2 HCM 1 Venl.Pkgl.Compl ERP_1
Ven1.Pkgl.Comp3 * Venl1.Pkgl.Compl ERP_1
n-1 n-1 n-1 n-1

n

n

n

FIG. 2B

U.S. Patent

Jun. 9, 2015

Sheet 3 of 6

Receive data model

/

N

108

304—

Select an instance of a
database schema

US 9,053,134 B2

A

Select another instance of a
database schema

| —306

305—

Select a schema mapping

A

N

Select another schema
mapping

| —307

I
|
|
|
|
|
I
I
|
I
1
|
|
|
|
|
¢

/

Generate data view using
received data model and
selected view variant

| —308

310a

322—

Receive user query

A 4

324—

Output result tables

FIG. 3

10b

Receive user query

332

A 4

QOutput result tables

| —334

d__

US 9,053,134 B2

Sheet 4 of 6

Jun. 9, 2015

U.S. Patent

qott

ey

-~

/y
/
‘y vov

’y
/
\\/
/y 801

A\ v
\\\\\ Vs Ve ////
=N\ y

J|npow
47 Sujddew ewoayds

80T

US 9,053,134 B2

Sheet 5 of 6

Jun. 9, 2015

U.S. Patent

S Ol

Z ewayas

as— 1

Z M3IA eleQg

90t

J01eI9UIZ MIIA Bl |

T eWayds

805—"

T M3IA eleQ

905— -

——
—
—
-_—
—
—
—
—
—

ajnpow

h

(44}

Suiddew ewayas

MIIA U
206/ INUOPPY

U.S. Patent

602

Jun. 9, 2015 Sheet 6 of 6

US 9,053,134 B2

. . 618
Communication Interface &

612
CPU a
614 616
s
Memory
620
|~
User 642
Interface
Device

FIG. 6

634

US 9,053,134 B2

1

VIEW VARIANTS IN DATABASE SCHEMA
MAPPING

FIELD

Embodiments relate to mapping database schema in inter-
connected database systems.

BACKGROUND

Consolidating the various data systems in a business enter-
prise (or any other organization) into a centralized data sys-
tem is increasingly common. For example, the SAP HANA®
database product provides advanced database technology
such as an in-memory database engine that can allow the
enterprise to store its most relevant data in main memory
which enables analytics to be performed directly in the data-
base.

However, an enterprise may maintain separate duplicate
data systems for some of'their operations. For example, a data
system for facilities (e.g., manufacturing, sales, etc.) in the
U.S. may be maintained separately from corresponding data
system for facilities in Europe. Providing a set of data for each
of the two data systems in a centralized data system may be
implemented by creating multiple instances of a database
schema for the separate data systems. Data modeling, how-
ever, then becomes a challenge because a data model is typi-
cally specific to a database schema. Managing multiple sepa-
rate copies of a data model for each database schema can be
time consuming from a development point of view and can be
error prone when new versions of the data model become
available and new copies need to be redeveloped.

SUMMARY

One embodiment includes a method for sharing data in an
interconnected database system. The method includes receiv-
ing a data model configured to model data in a first database
schema in a database system, using the received data model to
generate a first data view of a first instance of the first database
schema in the database system, including referencing, using a
first view variant, one or more data tables including the first
instance of the first database schema to generate the first data
view, and using the received data model to generate a second
data view of a second instance of the first database schema in
the database system, including referencing, using a second
view variant, one or more data tables including the second
instance of the first database schema to generate the second
data view.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will become more fully understood
from the detailed description given herein below and the
accompanying drawings, wherein like elements are repre-
sented by like reference numerals, which are given by way of
illustration only and thus are not limiting of the example
embodiments and wherein:

FIG. 1 illustrates a database system in accordance with one
or more example embodiments.

FIGS. 2A and 2B illustrate mapping tables in accordance
with one or more example embodiments.

FIG. 3 illustrates a general process flow for generating data
views in accordance with one or more example embodiments.

FIG. 4 illustrates a data model output manager for gener-
ating data views against multiple instances of a database
schema using the same data model in accordance with one or
more example embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates mapping an add-on view in accordance
with one or more example embodiments.

FIG. 6 illustrates a high level system diagram of a database
system in accordance with one or more example embodi-
ments.

It should be noted that these Figures are intended to illus-
trate the general characteristics of methods, structure and/or
materials utilized in certain example embodiments and to
supplement the written description provided below. These
drawings are not, however, to scale and may not precisely
reflect the precise structural or performance characteristics of
any given embodiment, and should not be interpreted as
defining or limiting the range of values or properties encom-
passed by example embodiments. For example, the relative
positioning of structural elements may be reduced or exag-
gerated for clarity. The use of similar or identical reference
numbers in the various drawings is intended to indicate the
presence of a similar or identical element or feature.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

While example embodiments may include various modifi-
cations and alternative forms, embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that
there is no intent to limit example embodiments to the par-
ticular forms disclosed, but on the contrary, example embodi-
ments are to cover all modifications, equivalents, and alter-
natives falling within the scope of the claims. Like numbers
refer to like elements throughout the description of the fig-
ures.

FIG. 1 illustrates a database system in accordance with one
or more example embodiments. As shown in FIG. 1 a data-
base system 100 in accordance with embodiments of the
present disclosure. The database system 100 may include a
database 102. One or more database schema instances (“data-
base schemas™) 104a, 1045 may be defined in the database
system 100. A data model output manager 106 may be pro-
vided to allow a user to query the received data model 108 to
generate reports, result tables, and other output 110a, 1105.

The figure illustrates a configuration where the database
system 100 is installed in an enterprise (customer) to enhance
or eventually replace the data systems of the enterprise. For
example, the enterprise may have pre-existing (legacy) cur-
rently operating data systems 10 and 12. Typical data systems
in an enterprise, for example, include enterprise resource
planning (ERP), customer relationship management (CRM),
human capital management (HCM), and so on. Portions of
the data systems 10, 12 may be migrated over, or in some
situations replicated, to the database system 100. As data
continues to be generated from the various operations 14 in
the enterprise (e.g., sales, manufacturing, etc.), the data may
continue to feed into the pre-existing data systems 10, 12. For
the data that has been migrated (or replicated), data from the
enterprise operations 14 may feed into the database system
100. For example, the data may be stored in database schemas
104a, 1045 which may represent portions of respective data
systems 10, 12 thathave been migrated to the database system
100.

In some embodiments, a provider may provide data mod-
eling services to support users of the database system 100. For
example, the provider may provide data models 108 to model
the data contained in database schemas 104a, 1045. In some
embodiments, the data model output manager 106 may
receive a data model 108 and, using the received data model,
query the data model to extract data (e.g., result tables 110a)

US 9,053,134 B2

3

from the database schema (e.g., 104a). In a particular
embodiment, for example, the database system 100 may be a
SAP HANA® database product developed and sold by SAP,
Inc. SAP support teams may provide data models call HANA
Content Packages to the customer to model the data in data-
base schemas defined in the database system 100.

As is conventionally understood, a “database schema” is a
specification that defines an organization of data. For
example, the data may be organized into a set of data tables
(e.g., “Customer Information”, “Product Information”, etc.)
that are called out in the specification. Each data table may
have table fields (e.g., “customer ID”, “customer address”,
“product ID”, etc.), field attributes, and so on which are stored
in the specification. The specification may be stored in a file
called a data dictionary.

A user may create an “instance” of a database schema. For
example, when a database schema has been instantiated, the
database system 100 may create instances of the data tables
(e.g., “Customer Information”, “Product Information”, etc.)
defined in the database schema; e.g., by creating a set of data
files in the database system. The data table instances may then
be populated with actual data (e.g., from the enterprise’s data
systems or operations such as sales, manufacturing, etc.) in
accordance with the organizational scheme defined by the
database schema.

In most contexts, the term “database schema” may be
understood to refer to an “instance” of the database schema,
because in most cases one speaks of specific instances of a
database schema rather than the data organization itself. For
example, 104a, 1045 in FIG. 1 represent instances of a data-
base schema. Accordingly, the phrase “database schema” will
be understood as referring to instances of the database
schema rather than referring to the organization of the data. If
“database schema” is intended to refer to the organization of
the data itself, that intention will be made explicit.

Multiple instances of the same database schema may be
created in a database system. An example of how this can
happen may be provided by the configuration shown in FIG.
1. Suppose, for example, the enterprise uses an ERP system to
manage the flow of information among its various business
operations, and that the enterprise has deployed a copy of the
ERP system in the U.S. as data system 10 and another copy in
Europe as data system 12. Suppose further that the enterprise
has migrated its sales data from each ERP data system 10, 12
to the database system 100. The enterprise may want to keep
the U.S. sales data separated from the European sales data. To
do this, a user may define a database schema in the database
system 100 which duplicates the data organization that is used
to store sales data inthe ERP data systems 10 and 12. The user
may then create a first instance 104a of the database schema
for U.S. sales by migrating the sales data from ERP data
system 10 into the first instance. The user may also create a
second instance 1045 of the database schema for European
sales by migrating the sales data from ERP data system 12
into the second instance. Database schemas 104a, 1045 rep-
resent multiple instances of the same database schema.

Continuing with FIG. 1, in accordance with principles of
the present invention, the data model output manager 106
may generate separate data views for each of the multiple
instances 104a, 1405 of the database schema using the same
data model. For example, the data model output manager 106
may use data model 108 in a first data view (not shown) to
allow a user to generate reports and other output tables 110a
from data contained in database schema 104q using the first
data view. The data model output manager 106 may use the
same data model 108 in a second data view (not shown) to
allow a user to generate other output 1105 from data con-

10

15

20

25

30

35

40

45

50

55

60

65

4

tained in database schema 1045 using the second data view.
This aspect of the present disclosure will be discussed inmore
detail below.

FIGS. 2A and 2B illustrate mapping tables in accordance
with one or more example embodiments. As shown in FIG.
2A, mapping table 205 includes four columns. The four col-
umns are content package 210, view variant 215, authoring
schema 220, and physical schema 225. Mapping table 205
may be configured to map view variants to different sets of
views accessing different schemes. A view variant may be
used to uniquely identify content packages. Mapping table
205 allows schema mapping on content package level such
that each content package may have a different schema map-
ping. A content package may or may not have the same
schema. A content package may or may not have the same
physical schema.

For example, the first two rows of mapping table 205
include view variant, ERP__1 and ERP_ 2 respectively. Each
view variant is associated with a same content package
Venl.Pkgl.Compl. The content package may be associated
with a vendor (e.g., SAP®), a package (e.g., an ERP), and a
component (e.g., ERP central component (ECC)). However,
each view variant is associated with a different physical (e.g.,
database) schema, ERP1 and ERP2 respectively. As shown in
FIG. 1, this scenario may occur if the enterprise uses an ERP
system to manage the flow of information among its various
business operations, and that the enterprise has deployed a
copy of the ERP system in, for example, the U.S. as data
system 10 and another copy in Europe as data system 12.

Utilizing mapping table 205, view variants may be config-
ured by administrators of a system (e.g., customer system)
and may be used to get different sets of views accessing
different schemes. System administrators may specify how
many different variants of the views the system administrator
needs and the possibility exists to specify how the schema
mapping of each of the specified variants shall be configured.
In the scenario above the system administrator may specify to
have two view variants and would specify that one view
variant is accessing physical schema ERP1 and the other
accessing physical schema ERP2.

Schema mapping is considered when database (e.g.,
HANA™ database) catalog objects are generated based on
the modeled objects in the content packages (e.g., HANA™
content packages). When catalog objects are generated an
extended schema mapping with variants is taken into account.
The extended schema mapping with variants may create one
catalog object per view variant created. Each catalog object
(per view variant) considering the corresponding schema
mapping from an authoring schema to a physical schema.

Further, views (hereinafter called calling views for clarity)
based on views for which there are different view variants
(e.g., ERP_1 and ERP_2 shown in mapping table 205)
(hereinafter called mapped views for clarity) may specity
which of the view variants the calling views call. With one
view variant there is no confusion as to which mapped view a
calling view refers to. However, if more that one mapped view
exists for a given content package, a calling view may refer to
an incorrect mapped view. Therefore another mapping table
250 is defined.

As shown in FIG. 2B, mapping table 250 includes four
columns. The four columns are calling package 255, calling
package view variant 260, called package 265, and called
package view variant 270. Mapping table 250 may be con-
figured to map a calling view correct mapped view. For
example, a HCM component of a content package may
include a calling view that calls an ERP component (e.g.,

US 9,053,134 B2

5

mapped view). Mapping table 250 shows view variant
HCM__ 1 mapped to view variant ERP_ 1.

Utilizing mapping table 250, view variants may be config-
ured by administrators of a system (e.g., customer system)
and may be used to map calling views to mapped views. In the
scenario above the system administrator may specify to have
a calling view refer to the correct mapped view if two or more
view variants could have been referred to by the calling view.

One embodiment includes a method for sharing data in an
interconnected database system. The method includes receiv-
ing a data model configured to model data in a first database
schema in a database system, using the received data model to
generate a first data view of a first instance of the first database
schema in the database system, including referencing, using a
first view variant, one or more data tables including the first
instance of the first database schema to generate the first data
view, and using the received data model to generate a second
data view of a second instance of the first database schema in
the database system, including referencing, using a second
view variant, one or more data tables including the second
instance of the first database schema to generate the second
data view.

FIG. 3 illustrates a general process flow for generating data
views in accordance with one or more example embodiments.
As shown in FIG. 3, a general workflow in database system
100 according to example embodiments is shown. The work-
flow may begin in a process block 302, where the database
system 100 receives a data model 108 into the database sys-
tem 100. In some embodiments, the data model 108 may
specify database operations (e.g., JOIN, SELECT, AVER-
AGE, etc.) to be performed on data tables and table fields
including a given database schema. The data model 108, for
example, may be provided from a development group within
an enterprise, from a third party provider, and so on.

In accordance with example embodiments, the data model
108 may be used to model each instance of the database
schema from among multiple instances. For example, in a
process block 304, a user may select an instance (e.g., 104a)
of'the database schema to be modeled; for example, by speci-
fying the name of the instance. In some embodiments, a user
interface may display a list of database schema instances to
choose from.

Upon selection of instance of the database schema from
among multiple instances, the instance may be mapped to
database schema using a view variant. For example, in a
process block 304, the data model output manager 106 may
refer to (e.g., utilizing a look-up or query) mapping table 205
to determine the view variant for the database schema. For
example, if the user selected an instance of the database
schema associated with content package Venl.Pkgl.Compl
and physical schema ERP1, the data model output manager
106 may determine the view variant as ERP__1. A resultant
schema mapping for a data table named tablel may be
“ERP__1/Venl.Pkgl.Compl/tablel™.

In a process block 308, the data model output manager 106
may generate a data view 310q using the data model 108
received in process block 302. The data view 310¢ may then
be queried by the user. For example, in step 322, one or more
queries (e.g., SELECT) may be received from the user and in
step 324 results 110a from the query may be output to the
user; e.g., on a display, printed out, and so on. A data view
contains the information which specifies a “view” (e.g.,
tables, graphs, reports, etc.) of stored data. A data view speci-
fies which tables to access, which fields of these tables, etc.
The data view may be accessed via an SQL select statement to
return data, for example, in a data table referred to as a “result
table”. The result table may be presented to the user, for

10

15

20

25

30

35

40

45

50

55

60

65

6

example, on a display. A data view is typically persisted (e.g.,
stored in a data store), while result tables are typically tran-
sient (e.g., displayed on a monitor), but may be printed (e.g.,
reports).

Another user may want to model another instance of the
database schema using the same data model 108. Accord-
ingly, in a process block 306, the other user may select
another database schema (e.g., 1045) to be modeled. Upon
selection of another instance of the database schema, the
instance may be mapped to the database schema using
another view variant. For example, in a process block 305, the
data model output manager 106 may refer to (e.g., utilizing a
look-up or query) mapping table 205 to determine the view
variant for the database schema. For example, if the user
selected an instance of the database schema associated with
content package Venl.Pkgl.Compl and physical schema
ERP2, the data model output manager 106 may determine the
view variant as ERP_ 2. A resultant schema mapping for a
datatable named tablel may be “ERP_ 2/Ven1.Pkgl.Comp1/
tablel”.

Process block 308 may be invoked to cause the data model
output manager 106 to generate a second data view 3105
using the data model 108 received in process block 302. The
user may then query the second data view 3105 (in a step 332)
to produce various output 1105 (in a step 334).

FIG. 4 illustrates a data model output manager for gener-
ating data views against multiple instances of a database
schema using the same data model in accordance with one or
more example embodiments. As shown in FIG. 4, in some
embodiments, the data model output manager 106 may
include a schema mapping module 402, a data view generator
406, and a database schema 404. The data model 108 may
designate a specific instance of a database schema (e.g., 104a)
in the database system 100. When the data model output
manager 106 receives the data model 108, the schema map-
ping module 402 may map the received data model as data
model 408 and associate the received data model with the
designated database schema 104aq.

In accordance with example embodiments, the schema
mapping module 402 may map another data model 408' of the
received data model 108 and associate data model 408' with
another instance of the database schema (e.g., 1045). For
example, as described above with reference to FIGS. 2A and
3, an instance of the database schema associated with content
package Venl.Pkgl.Compl and physical schema ERP1, the
data model output manager 106 may determine the view
variant as ERP_ 1 and an instance of the database schema
associated with content package Venl.Pkgl.Compl and
physical schema ERP2, the data model output manager 106
may determine the view variant as ERP_ 2.

For example, the mapped data model 408 may refer to data
tables in database schema 104a as the source of data for the
data model differently than the data tables in database schema
1045. Accordingly, mapped data model 408' may be mapped
such that that the corresponding data tables in database
schema 1045 are referred to differently than the correspond-
ing data tables in database schema 104a. For example, the
names of the data tables in database schema 104a are the same
as the names of the data tables in database schema 1045.
However, the full technical name of a data table in a given
database schema includes the name of the database schema to
which the data table belongs; e.g., SCHEMA1.TABLE1 may
be the full technical name of TABLEI in database schema
SCHEMAL1. Accessing a data table requires the full technical
name. Therefore according to example embodiments, the full
technical name may be modified according to the mapping
(e.g., based on the mapping in table 205); hence:

US 9,053,134 B2

7

Select From ERP__1.SCHEMA1.TABLE! . ..
or
Select From ERP_ 2.SCHEMAI1.TABLE! . ..

The data view generator 406 may receive a reference to the
mapped data model 408 and generate a data view 410a which
references data tables in the associated database schema
104a. Likewise, the data view generator 406 may receive a
reference to the mapped data model 408' and generate a data
view 4105 which references data tables in the associated
database schema 1045.

In some embodiments, the data views 410a, 4105 may be
persisted in a database schema. Referring to FIG. 4, for
example, a database schema 404 may store data view 410a. A
user may execute the data view 410a to produce result tables
110g from data referenced in database schema 104a. Like-
wise, the database schema 404 may store data view 4105, and
a user may execute data view 4105 to produce output 1105
from data referenced in database schema 1045.

Since the data model 408 uses data from database schema
104a and data model copy 408' uses data from database
schema 1045, the data contained in respective result tables
110a, 1105 generated by executing respective the data views
410a, 4105 are likely to be different. However, because the
data model 408' is and the data model 408 share the same
authoring schema, the names of the data views 410a and 4105
will be identical. For example, if the data model 408 specifies
adata view called ViewOnTotalSales, then the data view 410a
will use the name ViewOnTotalSales and data view 4105
would also use the name ViewOnTotalSales, thus creating a
naming conflict.

According to example embodiments, the method described
above may further include receiving a schema defining a third
data view, and modifying the third data view based on one of
the generated first data view and the generated second data
view. Modifying the third data view may include determining
a dependence between the third data view and one of the
generated first data view and the generated second data view
based on a look-up in a data table, and changing the schema
defining the third data view to reference one of the generated
first data view and the generated second data view based on
the determined dependence.

FIG. 5 illustrates mapping an add-on view in accordance
with one or more example embodiments. As shown in FIG. 5,
mapping an add-on view may include an add-on view block,
the data model output manager 106 (including the schema
mapping module 402 and the data view generator 406), a data
view 506, a data view 510, a schema 1 and a schema 2. As
discussed above, calling views may be based on mapped
views; FIG. 5 illustrates add-on view 502 as a calling view
and one of data view 506 and data view 510 being a mapped
view. The schema mapping module 402 may utilize table 250
to map add-on view 502 to one of data view 506 and data view
510. For example, if table 250 indicates add-on view 502 as
referencing data view 506, schema 508 may be the resultant
schema. On the other hand, if table 250 indicates add-on view
502 as referencing data view 510, schema 512 may be the
resultant schema.

Continuing the two examples above, the full technical
name of a data view in a given database schema includes the
name of the database schema to which the data view belongs;
e.g., SCHEMA1.VIEW1 (or ViewOnTotalSales) may be the
full technical name of VIEW1 (or ViewOnTotalSales) in data-
base schema SCHEMAL. Accessing a data view requires the
full technical name. Therefore, according to example
embodiments, the full technical name may be modified
according to the mapping (e.g., based on the mapping in table
250); hence:

10

15

20

25

30

35

40

45

50

55

60

65

8

Select From ERP__1.SCHEMA1.VIEW1 . ..

or

Select From ERP_ 2.SCHEMA1.VIEW1 . ..

and,

Select From ERP__1.SCHEMA1 .ViewOnTotalSales . . .
or

Select From ERP 2.SCHEMA1.ViewOnTotalSales . . .

Accordingly, if no view variants are introduced the schema
mapping module 402 will not acquire and append a prefix to
the technical name of the add-on view. However, for each
dependency, specifying (e.g., utilizing table 250) which of the
view variants are relevant for each calling package may link
the corresponding mapped view to the calling view.

FIG. 6 illustrates a high level system diagram of a database
system in accordance with one or more example embodi-
ments. The database system may be, for example, database
system 100 described above. As shown in FIG. 6, the database
system may include a high level block diagram of a computer
system 602 configured to operate in accordance with the
present disclosure. The computer system 602 may include a
central processing unit (CPU) 612 or other similar data pro-
cessing component, including multiprocessor configurations.

The computer system 602 may include various memory
components. For example, the memory components may
include a volatile memory 614 (e.g., random access memory,
RAM) and a data storage device 616. A communication inter-
face 618 may be provided to allow the computer system 602
to communicate over a communication network 622, such as
a local area network (LLAN), the Internet, and so on. An
internal bus 620 may interconnect the components including
the computer system 602.

The data storage device 616 may include a non-transitory
computer readable medium having stored thereon computer
executable program code 632. The computer executable pro-
gram code 632 may be executed by the CPU 612 to cause the
CPU to perform steps of the present disclosure, for example
the steps set forth in FIG. 3, or processing described in
embodiments of the data model output manager 106 shown in
FIGS. 4 and 5. The data storage device 616 may store data
structures 634 such as object instance data, runtime objects,
and any other data described herein (e.g., mapping tables 205
and 250). In some embodiments, for example, the data stor-
age device 616 may be a storage subsystem to provide the
database 102 and to store database schemas 104a, 1045.

A user may interact with the computer system 602 using
suitable user interface devices 642. They may include, for
example, input devices such as a keyboard, a keypad, amouse
or other pointing device, and output devices such as a display.

Some of the above example embodiments are described as
processes or methods depicted as flowcharts. Although the
flowcharts describe the operations as sequential processes,
many of the operations may be performed in parallel, concur-
rently or simultaneously. In addition, the order of operations
may be re-arranged. The processes may be terminated when
their operations are completed, but may also have additional
steps not included in the figure. The processes may corre-
spond to methods, functions, procedures, subroutines, sub-
programs, etc.

Methods discussed above, some of which are illustrated by
the flow charts, may be implemented by hardware, software,
firmware, middleware, microcode, hardware description lan-
guages, or any combination thereof. When implemented in
software, firmware, middleware or microcode, the program
code or code segments to perform the necessary tasks may be
stored in a machine or computer readable medium such as a
storage medium. A processor(s) may perform the necessary
tasks.

US 9,053,134 B2

9

Specific structural and functional details disclosed herein
are merely representative for purposes of describing example
embodiments. Example embodiments, however, be embod-
ied in many alternate forms and should not be construed as
limited to only the embodiments set forth herein.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
elements should not be limited by these terms. These terms
are only used to distinguish one element from another. For
example, a first element could be termed a second element,
and, similarly, a second element could be termed a first ele-
ment, without departing from the scope of example embodi-
ments. As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.

It will be understood that when an element is referred to as
being “connected” or “coupled” to another element, it can be
directly connected or coupled to the other element or inter-
vening elements may be present. In contrast, when an element
is referred to as being “directly connected” or “directly
coupled” to another element, there are no intervening ele-
ments present. Other words used to describe the relationship
between elements should be interpreted in a like fashion (e.g.,
“between” versus “directly between,” “adjacent” versus
“directly adjacent,” etc.).

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of example embodiments. As used herein, the singu-
lar forms “a,” “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises,”
“comprising,” “includes” and/or “including,” when used
herein, specity the presence of stated features, integers, steps,
operations, elements and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components and/or groups
thereof.

It should also be noted that in some alternative implemen-
tations, the functions/acts noted may occur out of the order
noted in the figures. For example, two figures shown in suc-
cession may in fact be executed concurrently or may some-
times be executed in the reverse order, depending upon the
functionality/acts involved.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which example embodiments belong. It will be further under-
stood that terms, e.g., those defined in commonly used dic-
tionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art
and will not be interpreted in an idealized or overly formal
sense unless expressly so defined herein.

Portions of the above example embodiments and corre-
sponding detailed description are presented in terms of soft-
ware, or algorithms and symbolic representations of opera-
tion on data bits within a computer memory. These
descriptions and representations are the ones by which those
of ordinary skill in the art effectively convey the substance of
their work to others of ordinary skill in the art. An algorithm,
as the term is used here, and as it is used generally, is con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of optical, electrical, or mag-
netic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven conve-
nient at times, principally for reasons of common usage, to

10

15

20

25

30

35

40

45

50

55

60

65

10

refer to these signals as bits, values, elements, symbols, char-
acters, terms, numbers, or the like.

In the above illustrative embodiments, reference to acts and
symbolic representations of operations (e.g., in the form of
flowcharts) that may be implemented as program modules or
functional processes include routines, programs, objects,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types and may be
described and/or implemented using existing hardware at
existing structural elements. Such existing hardware may
include one or more Central Processing Units (CPUs), digital
signal processors (DSPs), application-specific-integrated-
circuits, field programmable gate arrays (FPGAs) computers
or the like.

Elements described herein as communicating with one
another are directly or indirectly capable of communicating
over any number of different systems for transferring data,
including but not limited to shared memory communication,
a local area network, a wide area network, a telephone net-
work, a cellular network, a fiber-optic network, a satellite
network, an infrared network, a radio frequency network, and
any other type of network that may be used to transmit infor-
mation between devices. Moreover, communication between
systems may proceed over any one or more transmission
protocols that are or become known, such as Asynchronous
Transfer Mode (ATM), Internet Protocol (IP), Hypertext
Transfer Protocol (HTTP) and Wireless Application Protocol
(WAP).

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, or as is
apparent from the discussion, terms such as “processing” or
“computing” or “calculating” or “determining” of “display-
ing” or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical, electronic
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Note also that the software implemented aspects of the
example embodiments are typically encoded on some form of
program storage medium or implemented over some type of
transmission medium. The program storage medium may be
magnetic (e.g., a floppy disk or a hard drive) or optical (e.g.,
a compact disk read only memory, or “CD ROM”), and may
be read only or random access. Similarly, the transmission
medium may be twisted wire pairs, coaxial cable, optical
fiber, or some other suitable transmission medium known to
the art. The example embodiments not limited by these
aspects of any given implementation.

Lastly, it should also be noted that whilst the accompany-
ing claims set out particular combinations of features
described herein, the scope of the present disclosure is not
limited to the particular combinations hereafter claimed, but
instead extends to encompass any combination of features or
embodiments herein disclosed irrespective of whether or not
that particular combination has been specifically enumerated
in the accompanying claims at this time.

What is claimed is:

1. A method, comprising:

receiving a data model configured to model data in a first

database schema in a database system;

using the received data model to generate a first data view

of a first instance of the first database schema in the

US 9,053,134 B2

11

database system, including referencing, using a first
view variant, one or more data tables including the first
instance of the first database schema to generate the first
data view; and

using the received data model to generate a second data

view of a second instance of the first database schema in
the database system, including referencing, using a sec-
ond view variant, one or more data tables including the
second instance of the first database schema to generate
the second data view.

2. The method of claim 1, wherein the first data view and
the second data view are separate data views stored in an
instance of a shared database schema.

3. The method of claim 2, wherein

first result tables are generated from the first data view by

accessing data stored in the one or more datatables in the
first instance of the first database schema, and

second result tables are generated from the second data

view by accessing data stored in the one or more data
tables in the second instance of the first database
schema.

4. The method of claim 1, wherein

the first view variant is stored in a data table in reference to

the data model and the first instance of the first database
schema, and

generating the first data view includes looking-up the first

view variant in the data table.

5. The method of claim 1, wherein

the second view variant is stored in a data table in reference

to the data model and the second instance of the first
database schema, and

generating the second data view includes looking-up the

second view variant in the data table.

6. The method of claim 1, further comprising:

receiving a schema defining a third data view; and

modifying the third data view based on one of the gener-

ated first data view and the generated second data view.
7. The method of claim 6, wherein modifying the third data
view includes,
determining a dependence between the third data view and
one of the generated first data view and the generated
second data view based on a look-up in a data table; and

changing the schema defining the third data view to refer-
ence one of the generated first data view and the gener-
ated second data view based on the determined depen-
dence.

8. The method of claim 7, wherein the look-up in the data
table returns one of the first view variant and the second view
variant.

9. A database system comprising:

a computer system; and

a data storage device having stored thereon executable

program code which, when executed by the computer
system, causes the computer system to:

receive a data model which models data in a first database

schema in the database system;

use the received data model to generate a first data view of

a first instance of the first database schema in the data-
base system, including referencing, using a first view
variant, one or more data tables including the first
instance of the first database schema to generate the first
data view; and

use the received data model to generate a second data view

of a second instance of the first database schema in the
database system, including referencing, using a second

5

15

20

25

30

35

40

45

50

65

12

view variant, one or more data tables including the sec-
ond instance of the first database schema to generate the
second data view.

10. The database system of claim 9, wherein the first data
view and the second data view are separate data views stored
in an instance of a shared database schema.

11. The database system of claim 10, wherein

first result tables are generated from the first data view by

accessing data stored in the one or more datatables in the
first instance of the first database schema, and

second result tables are generated from the second data

view by accessing data stored in the one or more data
tables in the second instance of the first database
schema.

12. The database system of claim 9, wherein

the first view variant is stored in a data table in reference to

the data model and the first instance of the first database
schema,

generating the first data view includes looking-up the first

view variant in the data table,

the second view variant is stored in the data table in refer-

ence to the datamodel and the second instance of the first
database schema, and

generating the second data view includes looking-up the

second view variant in the data table.

13. The database system of claim 9, wherein the executable
program code which, when executed by the computer system,
further causes the computer system to:

receive a schema defining a third data view; and

modify the third data view based on one of the generated

first data view and the generated second data view.
14. The database system of claim 13, wherein modifying
the third data view includes,
determining a dependence between the third data view and
one of the generated first data view and the generated
second data view based on a look-up in a data table; and

changing the schema defining the third data view to refer-
ence one of the generated first data view and the gener-
ated second data view based on the determined depen-
dence.

15. A non-transitory computer-readable storage medium
having stored thereon computer executable program code
which, when executed on a computer system, causes the
computer system to perform steps of:

receiving a data model which models data in a first data-

base schema in the database system;

using the received data model to generate a first data view

of a first instance of the first database schema in the
database system, including referencing, using a first
view variant, one or more data tables including the first
instance of the first database schema to generate the first
data view; and

using the received data model to generate a second data

view of a second instance of the first database schema in
the database system, including referencing, using a sec-
ond view variant, one or more data tables including the
second instance of the first database schema to generate
the second data view.

16. The non-transitory computer-readable storage medium
of claim 15, wherein the first data view and the second data
view are separate data views stored in an instance of a shared
database schema.

17. The non-transitory computer-readable storage medium
of claim 16, wherein

first result tables are generated from the first data view by

accessing data stored in the one or more datatables in the
first instance of the first database schema, and

US 9,053,134 B2

13

second result tables are generated from the second data
view by accessing data stored in the one or more data
tables in the second instance of the first database
schema.

18. The non-transitory computer-readable storage medium
of claim 15, wherein

the first view variant is stored in a data table in reference to

the data model and the first instance of the first database
schema,

generating the first data view includes looking-up the first

view variant in the data table,

the second view variant is stored in the data table in refer-

ence to the datamodel and the second instance of the first
database schema, and

generating the second data view includes looking-up the

second view variant in the data table.

19. The non-transitory computer-readable storage medium
of claim 15, wherein the executable program code which,
when executed by the computer system, further causes the
computer system to:

receive a schema defining a third data view; and

modify the third data view based on one of the generated

first data view and the generated second data view.

20. The non-transitory computer-readable storage medium
of claim 19, wherein modifying the third data view includes,

determining a dependence between the third data view and

one of the generated first data view and the generated

second data view based on a look-up in a data table; and
changing the schema defining the third data view to reference
one of the generated first data view and the generated second
data view based on the determined dependence.

#* #* #* #* #*

10

15

20

25

30

14

